96. Vikesland, P.J. (2018). “Nanotechnology Enabled Water Quality Monitoring” Nature Nanotechnology, In Press.

95. Wei, H.; Vejerano, E.P.; Leng, W.; Huang, Q.; Willner, M.R.; Marr, L.C.; and Vikesland P.J. (2018). “Aerosol Microdroplets Exhibit a Stable pH Gradient” Proceedings of the National Academy of Sciences, In Press.

94. Pruden, A.; Alcalde, R.E.; Alvarez, P.J.J.; Ashbolt, N.; Bischel, H.; Capiro, N.L.; Crossett, E.; Frigon, D.; Grimes, K.; Haas, C.N.; Ikuma, K.; Kappell, A.; LaPara, T.; Kimbell, L.; Li, M.; Xu, L.; McNamara, P.; Seo, Y.; Sobsey, M.D.; Sozzi, E.; Navab-Daneshmand, T.; Nguyen, T.; Raskin, L.; Riquelme, M.V.; Vikesland, P.J.; Wigginton, K.; and Zhi, Z. (2018) “An Environmental Science and Engineering Framework for Combating Antimicrobial Resistance”. Environmental Engineering Science, Vol. 35 (https://doi.org/10.1089/ees.2017.0520)

93. Bahamonde, J.; Brenseke, B.; Chan, M.; Kent, R.; Vikesland, P.J.; and Prater, M. (2018) “Gold Nanoparticle Toxicity in Mice and Rats: Species DifferencesToxicologic Pathology, Vol. 46. pp. 431-443. (https://doi.org/10.1177/0192623318770608).

92. Liu, C.; Leng, W.; and Vikesland, P.J. (2018). “Controlled Evaluation of the Effects of Surface Coating on Silver Nanoparticle Dissolution Rates”. Environmental Science and Technology, Vol. 55, pp. 2726-2734. (http://dx.doi.org/10.1021/acs.est.7b05622).

91. Wei, H.; Leng, W.; Song, J.; Willner, M.R.; Marr, L.C.; Zhou, W.; and Vikesland, P.J. (2018). “Improved Quantitative SERS Enabled by Surface Plasmon Enhanced Elastic Light ScatteringAnalytical Chemistry, Vol. 90, pp. 3227-3237. (http://dx.doi.org/10.1021/acs.analchem.7b04667).

90. Metch, J.W.; Burrows, N.D.; Murphy, C.J.; Pruden, A.; and Vikesland, P.J. (2018) “Metagenomic Analysis of Microbial Communities Yields Insight into Impacts of Nanoparticle Design”. Nature Nanotechnology, Vol. 13, pp. 253-259. (http://dx.doi.org/10.1038/s41565-017-0029-3). Highlighted in Journal Editorial

89. Li, A-D; Metch, J.; Wang, Y.; Garner, E.; Zhang, A.N.; Riquelme, M.V.; Vikesland, P.J.; Pruden, A.; and Zhang, T. (2018) “Effects of Sample Preservation and DNA Extraction on Enumeration of Antibiotic Resistance Genes in Wastewater”. FEMS Microbiology Ecology, Vol. 94, Issue 2, fix189. (http://dx.doi.org/10.1093/femsec/fix189).

88. Arango, G.; Garner, E.; Pruden, A.; Heath, L.S.; Vikesland, P.; and Zhang, L. (2018). “DeepARG: A Deep Learning Approach for Predicting Antibiotic Resistance Genes from Metagenomic Data”. Microbiome. Vol. 6, 23 (http://dx.doi.org/10.1186/s40168-018-0401-z).

87. Chan, M.Y.; Leng, W.; and Vikesland, P.J. (2018) “Surface-Enhanced Raman Spectroscopy Characterization of Salt Induced Aggregation of Gold Nanoparticles”. ChemPhysChem, Vol. 19, pp. 24-28. (http://dx.doi.org/10.1002/cphc.201700798). Featured Cover Article.

86. Vikesland, P.J.; Pruden, A.; Alvarez, P.J.J.; Aga, D.; Bürgmann, H.; Li, X.-D.; Manaia, C.; Nambi, I.; Wigginton, K.; Zhang, T.; and Zhu, Y.-G. (2017). “Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance”. Environmental Science and Technology, Vol. 51, pp. 13061-13069 (http://dx.doi.org/10.1021/acs.est.7b03623).  Featured Cover Article. Selected as First Runner Up Best Feature Article of 2017 by Environmental Science and Technology.

85. Riquelme, M.V.; Leng, W.; Carzolio; Pruden, A.; and Vikesland, P.J. (2017) “Stable Oligonucleotide-Functionalized Gold Nanosensors for Environmental Biocontaminant Monitoring”. Journal of Environmental Sciences, Vol. 62, pp. 49-59. (http://dx.doi.org/10.1016/j.jes.2017.08.005).

84. Wei, H.; McCarthy, A.; Song, J.; Zhou, W.; and Vikesland, P.J. (2017) “Quantitative SERS by Hot Spot Normalization – Surface Enhanced Rayleigh Band Intensity as an Alternative Evaluation Parameter for SERS Substrate PerformanceFaraday Discussions, Vol. 205, pp. 491-504.. (http://dx.doi.org/10.1039/C7FD00125H).

83. Li, Y.; Geng, X.; Leng, W.; Vikesland, P.J.; and Grove, T.Z. (2017) “Gold Nanospheres and Gold Nanostars Immobilized onto Thiolated Eggshell Membranes as Highly Robust and Recyclable CatalystsNew Journal of Chemistry, Vol. 41, 17, pp. 9406-9413. (http://dx.doi.org/10.1039/C7NJ01908D).

82. Dai, D.; Prussin, A.J.; Marr, L.C.; Vikesland, P.J.; Edwards, M.E.; and Pruden, A.J. (2017) “Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control.” Environmental Science and Technology, Vol. 51, pp. 7759-7774 (http://dx.doi.org/10.1021/acs.est.7b01097).

81. Abtahi, S.M.H.; Burrows, N.D.; Idesis, F.A.; Murphy, C.J.; Saleh, N.B.; and Vikesland, P.J. (2017) “Sulfate Mediated End-to-End Assembly of Gold Nanorods”. Langmuir, Vol. 33, pp. 1486-1495 (http://dx.doi.org/10.1021/acs.langmuir.6b04114).

80. Vikesland, P.J. (2017) “Introduction – Environmental Engineering Science in the 21st CenturyEnvironmental Engineering Science, In Press. (http://dx.doi.org/10.1089/ees.2016.0548).

79. Pati, P.; McGinnis, S.; and Vikesland, P. (2016) “Waste Not Want Not: Life Cycle Implications of Gold Recovery and Recycling from Nanowaste.” Environmental Science: Nano, Vol. 3, pp. 1133-1143. (http://dx.doi.org/10.1039/c6en00181e).

78. Singh, G.; Chandoha-Lee, C.; Zhang, W.; Vikesland, P.J.; Renneckar, S.; and Pruden, A. (2016) “Biodegradation of Nanocrystalline Cellulose by Environmentally-Relevant Anaerobic Cellulose-Degrading Consortia.” Water Research, Vol. 104, pp. 137-146. (http://dx.doi.org/10.1016/j.watres.2016.07.073).

77. Vikesland, P.J. and Raskin, L. (2016) “Editorial: The Drinking Water ExposomeEnvironmental Science: Water Research and Technology, Vol. 2, pp. 561-564. (http://dx.doi.org/10.1039/C6EW90016J).

76. Kent, R.D. and Vikesland, P.J. (2016) “Dissolution and Persistence of Copper-Based Nanomaterials in Undersaturated Solutions with Respect to Cupric Solid PhasesEnvironmental Science and Technology, Vol.50, 6772-6781. (http://dx.doi.org/10.1021/acs.est.5b04719)

75. Geng, X.; Leng., W.; Carter, N.A.; Vikesland, P.J.; and Grove, T.Z. (2016) “Protein-aided Formation of Triangular Silver Nanoprisms with Enhanced SERS PerformanceJournal of Materials Chemistry B, Vol. 4, pp. 4182-4190. (http://dx.doi.org/10.1039/C6TB00844E).

74. Riquelme, M.V.; Zhao, H.; Srinivasaraghavan, V.; Pruden, A.; Vikesland, P.J.; and Agah, M. (2016) “Optimizing Blocking of Nonspecific Bacterial Attachment to Impedimetric BiosensorsSensing and Bio-Sensing Research, Vol. 8, pp. 47-54. (http://dx.doi.org/10.1016/j.sbsr.2016.04.003).

73. Wei, H.; Willner, M.; Marr, L.; and Vikesland, P.J. (2016) “Highly Stable SERS pH Nanoprobes Produced by Co-Solvent Controlled AuNP AggregationAnalyst, Vol. 141, pp. 5159-5169. (http://dx.doi.org/10.1039/C6AN00650G).

72. Vikesland, P.J.; Rebodos, R.L.; Bottero, J.Y.; Rose, J.; and Masion, A.  (2016) “Aggregation and Sedimentation of Magnetite Nanoparticle Clusters”  Environmental Science: Nano, Vol. 3, pp. 567-577. (http://dx.doi.org/10.1039/C5EN00155B).

71. Saverot, S.; Geng, X.; Leng, W.; Vikesland, P.J.; Grove, T.Z.; and Bickford, L.R. (2016) “Facile, Tunable, and SERS-Enhanced HEPES Gold Nanostars.” RSC Advances. Vol. 6, 29669-29673  (http://dx.doi.org/10.1039/C6RA00450D)

70. Afrooz, A.R.M.; Das, D.; Murphy, C.M.; Vikesland, P.J.; and Saleh, N. (2016) “Co-transport of Gold Nanospheres with Single-walled Carbon Nanotubes in Saturated Porous Media.”  Water Research, Vol. 99, 7-15.  (http://dx.doi.org/10.1016/j.watres.2016.04.006).

69. Kim, B.; Miller, J.; Monsegue, N.; Levard, C.; Hong, Y.; Hull, M.; Murayama, M.; Brown, G.E.; Vikesland, P.J.; Knocke, W.R.; Pruden, A.; and Hochella, M.F. (2016) “Silver Sulfidation in Thermophilic Anaerobic Digesters and Effects on Antibiotic Resistance Genes.” Environmental Engineering Science, Vol. 33, 1-10.

68. Wei, H. and Vikesland, P.J. (2015) “pH-Triggered Molecular Alignment for Reproducible SERS Detection via an AuNP/Nanocellulose Platform.” Scientific Reports, Vol. 5, Article number: 18131. (http://dx.doi.org/10.1038/srep18131)

67. Leng, W.; Pati, P.; and Vikesland, P.J. (2015) “Room Temperature Seed Mediated Growth of Gold Nanoparticles: Mechanistic Investigations and Life Cycle AssessmentEnvironmental Science: Nano, Vol. 2, 440-453. (http://dx.doi.org/10.1039/C5EN00026B) Featured Cover Article.

66. Metch, J.; Pruden, A.; and Vikesland, P.J. (2015) “Enhanced Disinfection By-Product Formation Due to Nanoparticles in Wastewater Treatment Plant EffluentsEnvironmental Science: Water Research & Technology, Vol. 1, 823-831. (http://dx.doi.org/10.1039/C5EW00114E)

65. Wei, H.; Rodriguez, K.; Renneckar, S.; Leng, W.; and Vikesland, P.J. (2015). “Preparation and Evaluation of Nanocellulose-Gold Nanoparticle Nanocomposites for SERS ApplicationsThe Analyst, Vol. 140, pp. 5640-5649 (http://dx.doi.org/10.1039/C5AN00606F)

64. Saverot, S.-E.; Reese, L.M.; Cimini, D.; Vikesland, P.J.; and Bickford, L.M. (2015). “Characterization of Conventional One-Step Sodium Thiosulfate Facilitated Gold Nanoparticle SynthesisNanoscale Research Letters, Vol. 10. (http://dx.doi.org/10.1186/s11671-015-0940-1)

63. Lahr, R.H.; Wallace, G.; and Vikesland, P.J. (2015). “Raman Based Characterization of Microfluidic Paper-Based Analytical Devices (µPADs)ACS Applied Materials and Interfaces, Vol. 7, pp. 9139-9146. (http://dx.doi.org/10.1021/acsami.5b01192)

62. Wei, H.; Abtahi, S.H. and Vikesland, P.J. (2015). “LSPR-based Colorimetric and SERS Sensors for Environmental AnalysisEnvironmental Science: Nano, Vol. 2, pp. 120-135. (http://dx.doi.org/10.1039/C4EN00211C).

61. Yuan, L.; Zhi, W.; Liu, Y.; Karyala, S.; Vikesland, P.; Chen, X.; and Zhang, H. (2015). “Lead Toxicity to the Performance, Viability, and Community Composition of Activated Sludge MicroorganismsEnvironmental Science and Technology, Vol. 49, pp. 824-830. (http://dx.doi.org/10.1021/es504207c)

60. Ma, Y.; Metch, J.W.; Vejerano, E.P.; Miller, I.J.; Leon, E.C.; Marr, L.C.; Vikesland, P.J.; and Pruden, A. (2015). “Microbial Community Response of Nitrifying Sequencing Batch Reactors to Silver, Zero-Valent Iron, Titanium Dioxide and Cerium Dioxide Nanomaterials.Water Research, Vol. 68, pp. 87-97. (http://dx.doi.org/10.1016/j.watres.2014.09.008)

59. Leng, W.L. and Vikesland, P.J. (2014). “MGITC Facilitated Formation of AuNP Multimers.” Langmuir, Vol. 30, pp. 8342-8349. (http://dx.doi.org/10.1021/la501807n)

58. Wei, H.; Rodriguez, K.; Renneckar, S.; and Vikesland, P.J. (2014). “Environmental Science and Engineering Applications of Nanocellulose-Based Nanocomposites.” Environmental Science: Nano, Vol. 1, pp. 302-316. (http://dx.doi.org/10.1039/C4EN00059E)

57. Kent, R.; Oser, J.; and Vikesland, P.J. (2014). “Controlled Evaluation of Silver Nanoparticle Sulfidation in a Full-Scale Wastewater Treatment Plant.” Environmental Science and Technology, Vol. 48, pp. 8564-8572. (http://dx.doi.org/10.1021/es404989t)

56. Lahr, R.H. and Vikesland, P.J. (2014). “Surface-Enhanced Raman Spectroscopy (SERS) Cellular Imaging of Intracellularly Biosynthesized Gold Nanoparticles.” ACS Sustainable Chemistry and Engineering, Vol. 2, pp. 1599-1608. (http://dx.doi.org/10.1021/sc500105n) Featured on Cover.

55. Pati, P.; McGinnis, S.; and Vikesland, P.J. (2014). “Life Cycle Assessment of “Green” Nanoparticle Synthesis Method.” Environmental Engineering Science, Vol. 31, pp. 410-420. (http://dx.doi.org/10.1089/ees.2013.0444)

54. Chan, M.Y. and Vikesland, P.J. (2014). “Porous Media Induced Aggregation of Protein Stabilized Gold NanoparticlesEnvironmental Science and Technology, Vol. 48, pp. 1532-1540 (http://dx.doi.org/10.1021/es404455w)

53. Pati, P.; Kent, R.; and Vikesland, P.J. (2013). “Nanoparticle Based Sensors for Water Quality Testing” in Nanotechnology for Water and Wastewater Treatment, Eds. Lens, Virkutye, Jegatheesan, Kim, and Al Abed, IWA Publishing, pp. 357-373.

52. Liu, D.; Xiu, Z.; Liu, F.; Wu, G.; Adamson, D.; Newell, C.; Vikesland, P.; Tsai, A-L; and Alvarez, P.J. (2013). “Perfluorooctanoic Acid Degradation in the Presence of Fe(III) under Natural SunlightJ. Hazardous Materials, Vol. 262, pp. 456-463. (http://dx.doi.org/10.1016/j.jhazmat.2013.09.001)

51. Chang, X. and Vikesland, P.J. (2013). “Effects of Dilution on the Properties of nC60Environmental Pollution, Vol. 181, pp. 51-59. (http://dx.doi.org/10.1016/j.envpol.2013.05.054)

50. Chang, X. and Vikesland, P.J. (2013). “Uncontrolled Variability in the Extinction Spectra of C60 Nanoparticle SuspensionsLangmuir, Vol. 29, pp. 9685-9693. (http://dx.doi.org/10.1021/la401583v)

49. Hull, M.; Warner, M.G.; Vikesland, P.J.; and Schultz, I.R. (2013) “Uptake and Retention of Metallic Nanoparticles in the Mediterranean Mussel Mytilus galloprovincialisAquatic Toxicology, Vol. 140-141, pp. 89-97. (http://dx.doi.org/10.1016/j.aquatox.2013.05.005)

48. Vikesland, P.; Fiss, E.M.; Wigginton, K.R.; McNeill, K.; and Arnold, W.A. (2013). “Halogenation of Bisphenol-A, Triclosan, and Chlorophenols in Chlorinated Waters Containing Iodide.” Environmental Science and Technology, Vol. 47, pp. 6764-6772. (http://dx.doi.org/10.1021/es304927j)

47. Leng, W. and Vikesland P.J. (2013). “Nanoclustered Gold Honeycombs for Surface-Enhanced Raman Scattering.” Analytical Chemistry, Vol. 85(3), pp 1342–1349. (http://dx.doi.org/10.1021/ac301028w)

46. Riquelme Breazeal, M.V.; Novak, J.T.; Vikesland, P.V.; and Pruden, A.J. (2013). “Effect of Wastewater Colloids on Membrane Removal of Antibiotic Resistance Genes.” Water Research, Vol. 47(1), pp. 130-140. (http://dx.doi.org/10.1016/j.watres.2012.09.044)

45. Miller, J.H.; Novak, J.T.; Knocke, W.R.; Young, K.; Hong, Y.; Vikesland, P.J.; Hull, M.S.; and Pruden, A.J. (2013). “Effect of Ag Nanoparticles and Antibiotics on Antibiotic Resistance Genes in Anaerobic Digestion.” Water Environment Research, Vol. 85(5), pp 411-421. (http://dx.doi.org/10.2175/106143012X13373575831394)

44. Hull, M.; Kennedy, A.; Detzel, C.; Vikesland, P.J.; and Chappell, M. (2012). “Moving Beyond Mass: The Unmet Need to Consider Dose Metrics in Environmental Nanotoxicology Studies.” Environmental Science and Technology, Vol. 46, pp 10881-10882. (http://dx.doi.org/10.1021/es3035285)

43. Detzel, C.J.; Leng, W.; Vikesland, P.J.; and Rajagopalan, P. (2012). “Intracellular Localization and Kinetics of Uptake and Clearance of Gold Nanoparticles in Primary Hepatic Cells.Nano LIFE, Vol. 2, 1241008. (http://dx.doi.org/10.1142/S1793984412410085)

42. Chang, X.; Duncan, L.K.; Jinschek, J.; and Vikesland, P.J. (2012). “Alteration of nC60 in the Presence of Environmentally Relevant Carboxylates Langmuir, Vol. 28, pp. 7622-7630. (http://dx.doi.org/10.1021/la3005272)

41. Kent, R.D. and Vikesland, P.J. (2012). “Controlled Evaluation of Silver Nanoparticle Dissolution Using Atomic Force MicroscopyEnvironmental Science and Technology, Vol. 46, pp. 6977-6984. (http://dx.doi.org/10.1021/es203475a)

40. Halvorson, R.; Leng, W.; and Vikesland, P.J. (2011). “Microcystin, Nodularin, and Component Amino Acid Identification by Drop Coating Deposition Raman SpectroscopyAnalytical Chemistry, Vol. 83, pp. 9273-9280. (http://dx.doi.org/10.1021/ac201617g)

39. Chang, X. and Vikesland, P.J. (2011). “ UV-Vis Spectroscopic Properties of nC60 Produced via Extended MixingEnvironmental Science and Technology, Vol. 45, pp. 9967-9974. (http://dx.doi.org/10.1021/es201229a)

38. Hull, M.; Chaurand, P.; Rose, J.R.; Auffan, M.; Bottero, J.Y.; Jones, J.; Schultz, I.; and Vikesland P. (2011). “Filter-Feeding Bivalves Store and Biodeposit Colloidally Stable Gold NanoparticlesEnvironmental Science and Technology, Vol. 45, pp. 6592-6599. (http://dx.doi.org/10.1021/es200809c)

37. Halvorson, R. and Vikesland, P. (2011). “Drop Coating Deposition Raman (DCDR) for Microcystin-LR Identification and QuantitationEnvironmental Science and Technology Vol. 45, pp. 5644-5651. (http://dx.doi.org/10.1021/es200255y)

36. Sarkar, S.; Zimmermann, K.; Leng, W.; Vikesland, P.; Zhang, J.; Dorn, H.; and Rylander, M.N. (2011). “Measurement of the Thermal Conductivity of Carbon Nanotube-Tissue Phantom Composites with the Hot Wire Probe MethodAnnals of Biomedical Engineering Vol. 39, pp. 1745-1758. (http://dx.doi.org/10.1007/s10439-011-0268-7)

35. Kennedy, A.; Hull, M.; Bednar, A.; Goss, J.; Gunter, J.; Bouldin, J.; Vikesland, P. and Steevens, J. (2010). “Fractionating Nanosilver: Importance for Determining Toxicity to Aquatic Test OrganismsEnvironmental Science and Technology, Vol. 44, pp. 9571-9577.  (http://dx.doi.org/10.1021/es1025382)

34. Rebodos, R.L. and Vikesland, P.J. (2010). “Effects of Oxidation on Magnetization of Nanoparticulate MagnetiteLangmuir, Vol. 26, pp. 16745–16753. (http://dx.doi.org/10.1021/la102461z)

33. Halvorson, R. and Vikesland, P.J. (2010). “Surface Enhanced Raman Spectroscopy (SERS) for Environmental Analyses.” Environmental Science and Technology, Vol. 44, pp. 7749-7755. (http://dx.doi.org/10.1021/es101228z) Featured Cover Article.

32. Buth, J.M.; Steen, P.O.; Sueper, C.; Blumentritt, D.; Vikesland, P.J.; Arnold, W.A. and McNeill, K.  (2010). “Dioxin Photoproducts of Triclosan and Its Chlorinated Derivatives in Sediment CoresEnvironmental Science and Technology, Vol. 44, pp. 4545–4551. (http://dx.doi.org/10.1021/es1001105)

31. Vikesland, P.J. and Wigginton, K.R. (2010). “Nanomaterial Enabled Biosensors for Pathogen Monitoring.” Environmental Science and Technology, Vol. 44, pp. 3656–3669. (http://dx.doi.org/10.1021/es903704z)

30. Parks, J.; Edwards, M.E.; Vikesland, P.J., and Dudi, A. (2010). “Effects of Bulk Water Chemistry on Autogenous Healing of Concrete.” J. Materials in Civil Engineering (ASCE), Vol. 22, pp. 515-524. (http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000082)

29. Wigginton, K.R. and Vikesland, P.J. (2010). “Gold-coated Polycarbonate Membrane Filter for Pathogen Concentration and SERS-based Detection.” The Analyst, Vol. 135, pp. 1320-1326. (http://dx.doi.org/10.1039/b919270k)

28. Hull, M.; Kennedy, A.; Steevens, J.; Bednar, A.; Weiss, C.; and Vikesland, P.J. (2009). “Release of Metal Impurities from Carbon Nanomaterials Influences Aquatic Toxicity.” Environmental Science and Technology, Vol. 43, pp. 4169-4174. (http://dx.doi.org/10.1021/es802483p)

27. Buth, J.M.; Grandbois, M.; Vikesland, P.J.; McNeill, K.; Arnold, W.A. (2009). “Aquatic Photochemistry of Chlorinated Triclosan DerivativesEnvironmental Toxicology and Chemistry, Vol. 28, pp. 2555-2563. (http://dx.doi.org/10.1897/08-490.1)

26. Rule, K.L. and Vikesland, P.J. (2009). “Surface-Enhanced Resonance Raman Spectroscopy for the Rapid Detection of Cryptosporidium parvum and Giardia lamblia.” Environmental Science and Technology, Vol. 43, pp 1147-1152. (http://dx.doi.org/10.1021/es801531t)

25. Chang, X. and Vikesland, P.J. (2009). “Effects of Carboxylic Acids on nC60 Aggregate Formation.” Environmental Pollution, Vol. 157, pp. 1072-1080. (http://dx.doi.org/10.1016/j.envpol.2008.09.052)

24. Carrico, B.; DiGiano, F.A.; Love, N.G.; Vikesland, P.J.; Fiss, E.M.; Zaklikowski, A.; Chandran, K. (2008). “Effectiveness of Switching Disinfectants for Nitrification Control.” J. Am. Water Works Assoc., Vol. 100, No. 10, pp. 104-110.

23. Duncan, L.K.; Jinschek, J.R.; Vikesland, P.J. (2008). “C60 Colloid Formation in Aqueous Systems: Effects of Preparation Method on Size, Structure, and Surface Charge.” Environmental Science and Technology, Vol. 42, pp. 173-178. (http://dx.doi.org/10.1021/es071248s)

22. Mutuc, M.M.; Love, N.G.; Vikesland, P.J. (2008). “Surface-Catalyzed Fenton Treatment of BCEE and BCEM.” Chemosphere, Vol. 70, pp. 1390-1398. (http://dx.doi.org/10.1016/j.chemosphere.2007.09.061)

21. Vikesland, P.J. and Rule, K.L. (2008). “Nanotechnology-Enabled Immunoassays for Drinking Water Protection.” Innovation, Vol. 8, No. 1, pp. 25-26.

20. Vikesland, P.J.; Heathcock, A.M. ; Makus, K.E.; Rebodos, R.L.  (2007). “Particle Size and Aggregation Effects on Magnetite Reactivity Towards Carbon Tetrachloride.” Environmental Science and Technology, Vol. 41, pp. 5277-5283. (http://dx.doi.org/10.1021/es062082i)

19. Fiss, E.M.; Rule, K.L.; Vikesland, P.J. (2007). “Formation of Chloroform and Other Chlorinated Byproducts by Chlorination of Triclosan-Containing Antibacterial Products.” Environmental Science and Technology, Vol. 41, pp. 2387-2394. (http://dx.doi.org/10.1021/es062227l)

18. Greyshock, A.E. and Vikesland, P.J.  (2006). “Triclosan Reactivity in Chloraminated Waters.” Environmental Science and Technology, Vol. 40, pp. 2615-2622. (http://dx.doi.org/10.1021/es051952d)

17. Vikesland, P.J.; Love, N.G.; Chandran, K.; Fiss, E.M.; Rebodos, R.; Zaklikowski, A.E.; DiGiano, F.A.; Ferguson, B. (2006). Assessment of Seasonal Chlorination Practices and Impacts to Chloraminating Utilities, AWWARF Press, Denver, CO.

16. Vikesland, P.J.; Rule, K.L.; Greyshock, A.E.; Ebbett, V.R.; Fiss, E.M. (2006). Triclosan Reactivity in Chlorinated and Monochloraminated Waters. AWWARF Press, Denver, CO.

15. Rule, K.L.; Ebbett, V.R.; Vikesland, P.J. (2005). “Formation of Chloroform and Chlorinated Organics by Free Chlorine Mediated Oxidation of Triclosan.” Environmental Science and Technology, Vol. 39, pp. 3176-3185. (http://dx.doi.org/10.1021/es048943+)

14. Kohn, T.; Livi, K.J.T.; Roberts, A.L.; Vikesland, P.J. (2005). “Longevity of Granular Iron in Groundwater Treatment Processes: Corrosion Product Development.” Environmental Science and Technology, Vol. 39, pp. 2867-2879. (http://dx.doi.org/10.1021/es048851k)

13. Aitkin, M.D.; Novak, J.T.; Characklis, G.W.; Jones, K.L.; Vikesland, P.J. (2004). “The Evolution of Environmental Engineering as a Professional Discipline.” Environmental Engineering Science, Vol. 21, pp. 117-123. (http://dx.doi.org/10.1089/109287504773087291)

12. McGuire, M. M.; Carlson, D. L.; Vikesland, P. J.; Kohn, T.; Grenier, A.; Langley, L. A.; Roberts, A. L.; D. H. Fairbrother. (2003). “Applications of Surface Analysis in the Environmental Sciences: Dehalogenation of Chlorocarbons with Zero-Valent Iron and Iron-containing Mineral Surfaces.” Analytica Chimica Acta, Vol. 496, pp. 301-313. (http://dx.doi.org/10.1016/S0003-2670(03)01009-2)

11. Vikesland, P.J.; Klausen, J.; Zimmermann, H.; Roberts, A.L.; and Ball, W.P. (2003). “Longevity of Cast Iron in Groundwater Treatment Processes:  Characterization of Changes in Column Hydraulic Residence Time Distributions.”  Journal of Contaminant Hydrology, Vol. 64, pp. 3-33. (http://dx.doi.org/10.1016/S0169-7722(02)00150-X)

10. Klausen, J.; Vikesland, P.J.; Kohn, T.; Burris, D.R.; Ball, W.P.; and Roberts, A.L. (2003).  “Longevity of Cast Iron in Groundwater Treatment Processes:  Solution Composition Effects on Reactivity Towards Organohalides and Nitroaromatic Compounds.”  Environmental Science and Technology, Vol. 37, pp. 1208-1218. (http://dx.doi.org/10.1021/es025965s)

9. Vikesland, P.J. and Valentine, R.L. (2002). “Iron-Oxide Surface Catalyzed Reduction of Monochloramine by Ferrous Iron: Implications of Oxide Type and Carbonate on Reactivity.” Environmental Science and Technology, Vol. 36, pp. 512-519. (http://dx.doi.org/10.1021/es010935v)

8. Vikesland, P.J. and Valentine, R.L. (2002).  “Modeling the Kinetics of Ferrous Iron Oxidation by Monochloramine.”  Environmental Science and Technology, Vol. 36, pp. 662-668. (http://dx.doi.org/10.1021/es002058j)

7. Vikesland, P.J.; Ozekin, K.; and Valentine, R.L. (2001).  “Modeling Monochloramine Decay in Model and Collected Distribution System Waters.”  Water Research, Vol. 35, No. 7, pp. 1766-1776. (http://dx.doi.org/10.1016/S0043-1354(00)00406-1)

6. Vikesland, P.J. and Valentine, R.L. (2000).  “Reaction Pathways Involved in the Reduction of Monochloramine by Ferrous Iron.”  Environmental Science and Technology, Vol. 34, pp. 83-90.  (http://dx.doi.org/10.1021/es990511p)

5. Valentine, R.L.; Vikesland, P.J.; Angerman, B.D.; Hackett, S.A.; Shoup, M.; and Slattenow, S. (2000).  The Role of the Pipe-Water Interface in the Formation of Disinfection By-Products and the Loss of Disinfectants in Drinking Water, AWWARF Press, Denver, CO.

4. Vikesland, P.J., Ozekin, K., and Valentine, R.L. (1998).  “Effect of Natural Organic Matter on Monochloramine Decomposition: Pathway Elucidation Through the Use of Mass and Redox Balances.” Environmental Science and Technology, Vol. 32, pp. 1409-1416. (http://dx.doi.org/10.1021/es970589a)

3. Valentine, R.L.; Ozekin, K.; and Vikesland, P.J. (1998).  Chloramine Decomposition in Distribution System and Model Waters, AWWARF Press, Denver, CO.

2. Vikesland, P.J.; Valentine, R.L.; and Ozekin, K. (1996).  “Application of Product Studies in the Elucidation of Chloramine Reaction Pathways” in Water Disinfection and Natural Organic Matter, Eds. R. Minear and G. Amy, ACS Books, Washington D.C. pp. 105-114. (http://dx.doi.org/10.1021/bk-1996-0649.ch007)

1. Ozekin, K.; Valentine, R.L.; and Vikesland, P.J. (1996).  “Modeling the Decomposition of Disinfecting Residuals of Chloramine” in Water Disinfection and Natural Organic Matter, Eds. R. Minear and G. Amy, ACS Books, Washington D.C. pp. 115-125. (http://dx.doi.org/10.1021/bk-1996-0649.ch008)


Dr. Peter Vikesland

1145 Perry Street (0246)

415 Durham Hall

Virginia Tech

Blacksburg, VA 24061

Vikesland Research Group

E-mail: pvikes 'at' vt edu

(540) 231-3568